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I. THE CONNECTION BETWEEN POTENTIAL AND FITNESS

Many evolutionary dynamics problems begin with the replicator equation [1], which in the continuum limit is as
follows:

∂p

∂t
= p(a, t)

[
f(a, p)− f̄(p)

]
, (S1)

where p is the probability distribution of a continuous phenotype a at time t, f is the fitness of a phenotype (say,
ornament size or brightness) given a population state, and f̄ =

∫∞
−∞ f(a, p)p(a, t) da is the average population fitness

[2].
Given that probability must be conserved, the distribution of phenotypes must also follow the continuity equation

∂p

∂t
= − ∂

∂a

(
p

da

dt

)
. (S2)

This formulation differs from the replicator equation (S1) in that it requires specification of the phenotype flux da/dt
rather than fitness f . Our approach treats this flux as derivable from some potential function, which we refer to as
ϕ, the net “reproductive potential” (see equation (3)).

Intuitively, the relationship between our phenotype flux da/dt and the more commonly used replicator equation
approach (the upward distribution flux) can be seen in figure S1. These reflect interchangeable ways of viewing the
evolutionary process of optimising the probability distribution p(a, t).

We can express the relationship between the two approaches mathematically simply by equating the right-hand-sides
of equations (S1) and (S2), yielding

f − f̄ = −1

p

∂

∂a

(
p

da

dt

)
= −c

(
1

p

∂p

∂a

∂ϕ

∂a
+
∂2ϕ

∂a2

)
(S3)

where the last equality makes use of equation (4). Integrating equation (S3) once with respect to a and using
equation (4) yields an integro-differential equation for ϕ in terms of f :

∂ϕ

∂a
= − 1

cp

∫ a

−∞
p
(
f − f̄

)
da, (S4)

assuming p da/dt→ 0 as a→ −∞.

II. FIXED POINTS FOR GENERAL CLASS OF POTENTIAL FUNCTIONS WITH MINIMUM OF 2
MORPHS

In our analysis of (5), we claim that “reasonable” potential functions lead to stratification from a nearly uniform
population into multiple distinct morphs. Here we examine in more detail what we mean by “reasonable”. Again we
consider a potential function

ϕ = sϕ(soc) + (1− s)ϕ(ind), s ∈ [0, 1]
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FIG. S1. (Colour online) Consider an infinitesimal sliver (dashed green) of the probability density function at a particular time
(solid black). After an infinitesimal time increment, the probability density function changes a small amount (dashed black).
Because probability is conserved, the flux da/dt of population ornament sizes into (or out of) the sliver increases (or decreases)
the height of the probability density function.

where ϕ(soc) is a continuous and differentiable increasing function of ornament size, and ϕ(ind) is a continuous, singly-
peaked function of ornament size. Assuming that the dynamics are such that ornaments grow on an evolutionary
time scale at a rate proportional to marginal potential gain,

da

dt
∝ ∂

∂a
ϕ,

and we have
da

dt
= 0 only for a ≥ aopt.

We further assume that the following two criteria are satisfied:

1. Individual effects dominate reproductive potential for large ornament sizes. Specifically,

(1− s)
∣∣∣∣ ∂∂aϕ(ind)

∣∣∣∣ > s

∣∣∣∣ ∂∂aϕ(soc)

∣∣∣∣ as a→∞. (S5)

This prevents ornament size from growing without bound, as can occur in equation (5) for γ ≥ 2.

2. Social effects dominate reproductive potential for at least some range of ornament sizes greater than the popu-
lation mean. In other words,

(1− s)
∣∣∣∣ ∂∂aϕ(ind)

∣∣∣∣ < s

∣∣∣∣ ∂∂aϕ(soc)

∣∣∣∣ (S6)

for at least some range of a > ā. Failure to meet this criterion could be considered “false” ornamentation, as
can occur in equation (5) for γ = 1.

Assuming that the two-sided limits exist everywhere for both potential functions (a less strict requirement than
continuity), these criteria guarantee that two or more morphs will emerge. See figure S2 (a)-(c) for graphical proof.

III. FIXED POINTS FOR GENERAL CLASS OF POTENTIAL FUNCTIONS WITH MAXIMUM OF 2
MORPHS

In our fixed points analysis of equation (5), we only consider uniform and two-morph steady states. We now show
that these are the only types of fixed points for a wider class of potential functions, including our potential function
(3). Consider a more general total potential function

ϕ = sϕ(soc) + (1− s)ϕ(ind), s ∈ [0, 1] (S7)
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FIG. S2. (Colour online) Sketched examples of derivatives of negated individual potential (dashed blue) and social potential
(dot dashed maroon) for a single male in a population near equilibrium. The derivative of total potential (solid black) is
proportional to da/dt, so intersections of individual and social potentials are the fixed points. Stable fixed points are marked
with a filled black dot, and unstable fixed points are marked with an unfilled black dot. The total potential is inset. (a) An
example of potential functions that satisfy restriction (S6), but not restriction (S5). In this case, both a stable uniform state
and unbounded growth are possible. (b) An example of potential functions that satisfy restriction (S5), but not restriction (S6).
In this case, the population will evolve to a uniform state. (c) An example of potential functions satisfying both restrictions
(S5) and (S6). These conditions guarantee that the population will evolve into at least two morphs. (d)-(i) With restrictions
(S8), the only possible stable steady states (filled black dots) are one- or two-morphs. Note that the system may or may not
have an unstable node (unfilled black dots), or it may have no fixed points.

where ϕ(soc) is a continuous and differentiable increasing function of ornament size, and ϕ(ind) is a continuous, singly-
peaked function of ornament size. Similar to our previous general class of potential functions,

da

dt
∝ ∂

∂a
ϕ,

we conclude that
da

dt
= 0 only for a ≥ aopt. This implies that equilibrium ornament sizes (if an equilibrium exists)

will all be at least as large as the optimal. Because this is a first order ordinary differential equation model, we also
know that oscillations are not possible.
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We further assume that

∂3

∂a3
ϕ(ind) ≡ 0

∂3

∂a3
ϕ(soc) > 0 or

∂3

∂a3
ϕ(soc) < 0, a 6= ā.

(S8)

In other words, individual potential is quadratic, and the derivative of social potential is either concave up or concave
down, except possibly at the mean. With these additional restrictions on the potential function, only uniform and two-
morph stable fixed points are possible. See figure S2 (d)-(i) for graphical proof. Our model (5) satisfies all restrictions,
so we conclude that our exploration of the one- and two-morph steady states was a thorough investigation of all possible
fixed points.

IV. CONTINUUM LIMIT

In the main manuscript, we derived the phenotype dynamics (5) of a system of N population representatives. The
fixed points of this system are a discrete set of ornament sizes. Now we take N → ∞, which turns the N ordinary
differential equations into a partial integro-differential equation for a continuous distribution of ornament sizes p(a, t).
The equation we derive is the replicator function for continuous phenotypes [2].

We use conservation of probability to find the governing equation for the probability density function p(a, t). The
probability of a male having an ornament size in (a, a + da) for small da is approximately p(a, t) da. Given our
assumption that individuals are neither created nor destroyed in (a, a+ da), we have

∂p

∂t
da = p

da

dt

∣∣∣∣∣
a

− p da

dt

∣∣∣∣∣
a+da

.

In other words, the change in individuals in the sliver (a, a + da) is equal to the number that enter the sliver minus
the number that leave. In the limit da→ 0, we get the continuity equation

∂p

∂t
= − ∂

∂a

(
p

da

dt

)
. (S9)

The dynamics of a follow (5) in the limit N →∞

da

dt
= c
[
s γ|a− ā|γ−1 + 2(1− s) (aopt − a)

]
, (S10)

where the mean ornament size is

ā =

∫ ∞
−∞

a(t) p(a, t) da.

We substitute (S10) into (S2) to get a partial integro-differential equation for the probability density function p(a, t)
for ornament size

∂p

∂t
= −c ∂

∂a

(
p
[
s γ|a− ā|γ−1 + 2(1− s) (aopt − a)

])
. (S11)

A. Continuum limit uniform steady state

Now that we have established the continuum limit of the discrete model, we wish to investigate the fixed points we
found previously. Within this continuum framework, the uniform fixed point a = aopt is the delta distribution

p(a, t) = δ(a− aopt). (S12)

Previously, we investigated the stability of the uniform steady state by perturbing every member of the population
by the same arbitrary, small amount. If we wished to repeat this investigation for the continuum model, we would
shift the peak of the delta function by an arbitrary small amount from aopt to some a0. To make stability analysis
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more general, we also consider widening the delta function into a narrow Gaussian with an arbitrary small standard
deviation σ. Figure S3 (a),(b) illustrate this idea.

We now wish to confirm that this continuum representation (S10) of the model is consistent with our discrete model
(5), at least near the simplest fixed point (the uniform state). Based on our previous stability analysis, we expect
that a0 will shift back to aopt and the width of the peak will shrink to 0 for γ ≥ 2. However, we do not know how
quickly these shifts occur relative to each other.

We will first investigate the dynamics of a0 (i.e. σ is effectively constant on the time scale of interest). Then the
“perturbed” distribution is the narrow Gaussian

p(a, t) =
1

σ
√

2π
e−(a−a0(t))

2/2σ2

(S13)

with constant σ � 1 and a0(t) near the fixed point aopt.
Plugging (S13) into the continuity equation (S2), and solving for the highest order (fastest) dynamics of a0, we see

da0
dt

= sγ|a− a0|γ−1 + 2(1− s) (aopt − a). (S14)

Note that (S14) is only true if σ → 0+ faster than a → a0. If we instead assume σ → 0+ slower than a → a0, the
right-hand side of (S14) is unbounded, and therefore inconsistent with the discrete model. Taking a → a0 in (S14),
we see as expected

da0
dt

= 2(1− s) (aopt − a0).

As we see that σ shrinks to 0 faster than a→ a0, we investigate the dynamics of σ(t)� 1 for a0 = aopt. Again, we
take p(a, t) to be a narrow Gaussian distribution

p(a, t) =
1

σ(t)
√

2π
e−(a−a0)

2/2σ(t)2 . (S15)

Substituting (S15) into (S2) and Taylor expanding about σ = 0 gives

dσ

dt
=

[
γ |a− a0|γ−1

a− a0
+ 2

1− s
s

aopt − a
a− a0

]
σ +O(σ3).

We see that as a → a0 = aopt for γ < 2, the uniform fixed point is unstable (coefficient of σ is ∞). For γ > 2, the

fixed point is stable (coefficient of σ is −2
1− s
s

). The fixed point for γ = 2 is conditionally stable (coefficient of σ is

±2− 2
1− s
s

). These results agree with the finite N model.

B. Continuum limit two-morph steady state

Next, we investigate the stability of the two-morph steady state. Similar to our investigation of the uniform steady
state, we “perturb” the two-morph steady state to the weighted sum of two narrow Gaussian distributions

p(a, t) =
x

σ1(t)
√

2π
e−(a−a1)

2/2σ1(t)
2

+
1− x

σ2(t)
√

2π
e−(a−a2)

2/2σ2(t)
2

, (S16)

where a1 and a2 are given by the two-morph fixed point (8). Figure S3 (c),(d) illustrate this idea.
Plugging (S16) into the continuity equation (S2) and using ā = xa1 + (1 − x)a2, we get a system of two ordinary

differential equations for the evolution of σ1 and σ2:

dσ1
dt

=λ1σ1 +O(σ3
1)

dσ2
dt

=λ2σ2 +O(σ3
2),

(S17)

where λ1 and λ2 depend on aopt, s, x, and γ (expressions omitted due to length). Setting aopt = 1 and s = 1/2
for instance, we plot the stability region (i.e., where λ1, λ2 < 0) for the two-morph steady state in terms of social
sensitivity γ and the proportion of males in the large-ornamented group. See figure 3 (d). This is the same stability
region we found numerically, which resolves the apparent discrepancy we saw when perturbing the locations of the
peaks, but not the widths of the peaks of the two-morph steady state distribution. We have confirmed numerically
that convergence to the two-morph fixed points is approximately exponential.
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FIG. S3. We consider perturbations to the uniform fixed point a = aopt and the two-morph fixed point in equation (8) such
that the peaks of the distribution are centred at the fixed point solution, and the widths of the peaks are nearly 0. (a) Shift
peak of the delta uniform solution to a0. (b) Perturb peak width of the delta uniform solution. (c) Two-morph steady state.
(d) Perturb peak widths of the delta two-morph solution.

V. EIGENVALUES OF SYSTEM AS N → ∞

When investigating the stability of the two morph steady state, we chose to take the continuum limit of the model
and then investigate the dynamics of the standard deviation of a Gaussian perturbation to the two morph equilibrium.
Now we look at the eigenvalues of the finite N system in the limit N →∞.

Scaling time such that c = 1, the Jacobian for the system (5) has diagonal elements

Jii = sγ(γ − 1)

(
1− 1

N

)2

sgn (ai − ā)|ai − ā|γ−2 − 2(1− s),

and off-diagonal elements

Jij = sγ(γ − 1)

(
− 1

N

)(
1− 1

N

)
sgn (ai − ā)|ai − ā|γ−2.

As N →∞,

Jii → sγ(γ − 1) sgn (ai − ā)|ai − ā|γ−2 − 2(1− s)
Jij → 0,

indicating that for large N , the Jacobian matrix is approximately diagonal. Therefore, the diagonal elements are
approximately the eigenvalues. Plugging in the two morph fixed point (8), we get two eigenvalues λ1 and λ2 with
multiplicity xN and (1− x)N respectively. If we plot the stability region (i.e. where λ1, λ2 < 0), we see that it’s the
same as that of the continuum model seen in figure 3 (d).

VI. ALTERNATIVE MULTIPLICATIVE FORM FOR POTENTIAL

Rather than using a weighted sum to construct a total potential as in equation (3) of our main text, we could have
considered a weighted product as advocated in [3] and [4], where the authors argue that viability and mating success
contribute multiplicatively. We chose to present the mathematical analysis in the context of an additive reproductive
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potential because of the greater simplicity, but a multiplicative potential produces the same qualitative results, and
can even be considered in the same way by re-interpreting quantities in question on a logarithmic scale (in which case
multiplicative terms become additive).

Still, it may be of interest to some readers to see how an explicitly multiplicative model plays out. To create such
a model, we first need to scale the reproductive potential functions such that ϕ(soc), ϕ(ind) ∈ [0, 1] and a ∈ [0, 1].

To retain a quadratic individual potential function with maximum ϕ(ind) = 1 and roots at a = {0, 1}, we can choose

ϕ(ind) = 4a(1− a), a ∈ [0, 1]. (S18)

Note that this choice implies aopt = 1/21. Next, to retain the monotonically increasing social potential function tuned
with the social sensitivity γ, we set

ϕ(soc) =
sgn (a− ā)|a− ā|γ + āγ

(1− ā)γ + āγ
, a ∈ [0, 1]. (S19)

Assuming a weighted product of the individual and social potential terms, the total reproductive potential becomes

ϕ =
(
ϕ(soc)

)s (
ϕ(ind)

)1−s
, (S20)

where ϕ(soc) and ϕ(ind) are (S19) and (S18), respectively, and s tunes the relative importance of each term. Plugging
this into equation (4) of the main text, we get

da

dt
= c

[
s

(
ϕ(ind)

ϕ(soc)

)1−s
∂

∂a
ϕ(soc) + (1− s)

(
ϕ(ind)

ϕ(soc)

)−s
∂

∂a
ϕ(ind)

]
(S21)

or

da

dt
= c

(
ϕ(ind)

ϕ(soc)

)−s [
s

(
ϕ(ind)

ϕ(soc)

)
∂

∂a
ϕ(soc) + (1− s) ∂

∂a
ϕ(ind)

]
. (S22)

We observe that (S22) retains the form of a weighted sum of two terms, though the split of natural and sexually
selective forces is now more complicated. The weights are different from (5), but remain positive, and the general
arguments for existence of multimodal equilibrium distributions may be extended to this system in a straightforward
way.

VII. MECHANISMS FOR BIMODALITY

A key feature of our model is that it is agnostic to the genetic mechanism by which the two-morph distribution
is maintained. That is, we make no assumptions about the genetics other than presuming that maintenance of such
a distribution is possible (by some mechanism). Rather, we demonstrate that the bimodal distribution—and thus a
mechanism to maintain it—is an emergent, evolutionarily favorable consequence of Zahavi’s handicap principle.

There are several molecular mechanisms by which a population with multiple optima can be maintained, including
overdominance, complex polygenic or epistatic relationships, or epigenetic modifications. Any of these (amongst oth-
ers) could be involved in the maintenance of the predicted bimorphic trait. Because our model makes no assumptions
(or predictions) about which of these mechanisms maintain the two-morph state, it is general to any organismal trait
where Zahavi’s handicap principle applies, and is insensitive to assumptions about the genetic architecture.

Of course, we do not wish to imply that our model is the only possible explanation (or even necessarily the dominant
effect) where polymorphism is observed. The importance of this effect probably varies from species to species and
ornament to ornament.

VIII. APPLICABILITY OF MODEL

Our model applies most naturally to inter-sexual selection (female choice as the dominating force), and in the
interest of simplicity we ignore alternative reproductive strategies (e.g., female mimicry by males). We believe that
it may be possible to generalize our model to include effects like negative-frequency dependent selection—e.g., as
another type of social effect that would impact the shape of the social potential function in our model—but leave that
for future work.

1 A more general form allowing for arbitrary aopt would map a→ aα, where α = − ln(2)/ ln(aopt).
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IX. STATISTICAL ANALYSIS OF ORNAMENTATION DATA

Our model for the evolution of costly mating displays predicts the emergence of two distinct morphs of ornament
sizes. We tested whether the two-morph state was detectable in a variety of ornament datasets (figures S5,S6). Three
approaches were used: a parametric mixture–model fit; the nonparametric but highly conservative Hartigans’ Dip
Test for bimodality [5]; and a simulation–based nonparametric test which improves upon the Hartigan test sensitivity.

We present test results for Hartigans’ Dip Test and the simulation–based nonparametric test, called the LUU (Least
Unimodal Unimodal) test for reasons that will be clear, in table I. Test results for the parametric–model fit are in
table II.

A. Parametric two-morph test

All count and size measurement data were log-transformed prior to analysis (as is typical for physical measurements)
to account for the bounded support of size distributions. Here, we make the assumption that ornament sizes within
a morph will be log-normally distributed, and that a multi-morph state will exhibit a mixture of distributions. We
thus fit Gaussian mixture models with 1–5 components of unequal variance to the log-transformed data and find the
number of components that yields the best BIC [6]. In the absence of a social fitness pressure, we expect the best fit
to be a single Gaussian (corresponding to the one morph state), while the two–morph state predicted from our model
will have the best fit with ≥ 2 components.

B. Hartigans’ dip test

An essential drawback of using the above mixture model fit to assess the number of ornament–size morphs in the
data is that it is extremely sensitive to deviations from the parametric assumption that a one–morph state will be
well–described by a single Gaussian. False positives are likely when those assumptions are violated; if a single–morph
state has a skewed (or otherwise non-normal) distribution, a mixture of ≥ 2 Gaussians will generally give a higher
BIC than a single–component distribution.

A more conservative approach is to look for evidence of strict multimodality (with dips in the distribution), rather
than a mixture (which may not exhibit a “dip”). Hartigan and Hartigan define the dip statistic D as the maximum
difference between the empirical cumulative distribution function and the CDF of the unimodal distribution that
minimises that maximum difference. The reference distribution is customarily taken to be the uniform distribution,
the least singly–peaked of all unimodal distributions. The p-value for the dip is calculated by comparing D to those
obtained from repeated samples of the same size drawn from a uniform distribution. The dip test thus measures
whether the empirical distribution of the data exhibits greater departure from unimodality than would be expected
from a sample of the same size if the underlying distribution were uniform.

C. Bootstrap dip test

While the mixture test may be overly sensitive in detecting deviations from a single morph, Hartigans’ dip test
is likely to be excessively conservative and insensitive at small sample sizes. A finite sample drawn from a uniform
distribution will, with high probability, have a larger dip by chance than a finite sample drawn from a two–morph
distribution such as those shown in figure 4 (a),(b).

To address this problem, we propose a bootstrap dip test which takes as its reference distribution the “least
unimodal” unimodal density estimate of the sample. Given a finite sample, we construct a kernel density estimate
(KDE) using a Gaussian kernel at various bandwidths. At very large bandwidths, the KDE will be unimodal; as the
bandwidth is reduced, the KDE will approach a multimodal distribution with as many modes as there are unique
values in the dataset. We define the least–unimodal unimodal (LUU) distribution to be that obtained from the
smallest bandwidth for which the KDE is still strictly unimodal.

From this LUU density estimate, we generate random samples of the same size as the original data, and compute
their dip statistics. These bootstrapped samples serve as the reference distribution against which the dip statistic
of the data is compared. This test thus measures whether the empirical distribution of the data exhibits greater
departure from unimodality than would be expected from a sample of the same size if the underlying distribution
were the unimodal distribution best fit to the sample. Figure S4 illustrates that this bootstrap dip test is more sensitive
to bimodality than Hartigans’ Dip Test.
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FIG. S4. For small sample sizes of bimodal data, like we have for most of our animal data sets, the p-values for bimodality
using Hartigans’ Dip Test (blue) are larger than our bootstrap dip test (red). As the sample size increases, we gain significance
using our test first and Hartigans’ Dip Test eventually, showing our test is less conservative. The data used here are equilibrium
states of our model (5) for γ = 1.5, s = 0.5, and aopt drawn from a normal distribution with mean 1 and standard deviation
0.25. We know these samples are bimodal. Error bars are standard deviations from 10 trials.

X. ADDITIONAL DATA AND ANALYSIS

We have additional data sets of ornament distribution from various species in figures S5 and S6. The kernel density
curves are superimposed for reference. If body size is a form of advertising, then we may also use data of salmon [25],
trout [26], wolf spiders [27], and other bimodally distributed species. See figure S7.

While this work is based on mating displays in the animal kingdom, we hypothesise that similar forces operate
on plants that compete within their own species for resources. For instance, a tree’s height could be analogous to
ornament size in our model, in that growing taller incurs costs to the individual, but being relatively taller in a forest
has competitive benefits. In fact, certain tree species exhibit bimodal height distributions [28, 29]. See figure S8.

XI. CONNECTION TO SPECIATION MODELS

We speculate that the mechanism we describe here may also have implications for speciation. Models of speciation
presented in Lande [4] and Stewart [31] are similar to our ornamentation model in both form and outcome. Stewart
claims that for an all-to-all system of behaviourally identical individuals (like ours), the population will split into two
species for most environmental conditions. Like our social sensitivity γ, Stewart’s environmental factor λ varies on a
slow time scale relative to the dynamical system. Also like our model, Stewart’s model exhibits similar fractionation
(simulating 100 individuals, the population splits into “clumps” of 84 and 16).

Lande uses quantitative genetics techniques to show that sexual selection may lead to speciation. Our model is
quite similar to Lande’s model interpreted on a logarithmic scale. Like our model, Lande’s sexual selection alone
would lead to runaway ornament sizes, but natural selection stabilises growth. Unlike our model, Lande states that
“natural selection on mating preferences also creates the possibility of evolutionary oscillations.” Because we ignore
the long time scale effects of female choice, our model precludes the possibility of oscillations.
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Data set N
p-value (Dip
test)

p-value (LUU
test)

p-value (Dip
test - log
data)

p-value (LUU
test - log
data)

Tests reject
unimodality?

Dung beetle horn length (Emlen
[7])

223 0.0011** 0.0001*** 0.0035** 0.0000*** yes

Yellow-breasted chat plumage
coloration (Mays [8])

62 0.1932 0.0530 0.5479 0.2652 no

Peacock eye spots (Loyau [9]) 24 0.6390 0.3793 0.5965 0.3187 no
Peacock eye spots (Petrie [10]) 24 0.9183 0.7682 0.8809 0.6963 no
Peacock eye spots (Loyau/Petrie
merged)

48 0.9016 0.6699 0.9006 0.6587 no

Arctic charr skin brightness
(Skarstein [11])

20 0.2633 0.1558 0.2802 0.1658 no

Salmon body size (Glover [12]) 72 0.6206 0.1467 0.7432 0.2497 no
Widowbird tail length (Anderson
[13])

107 0.9992 0.9700 0.9972 0.9594 no

Widowbird red collar patch size
(Anderson [13])

107 0.0046** 0.0002*** 0.0317* 0.0030** yes

Barn owl spottiness (Nieche [14]) 20 0.6476 0.3858 0.7196 0.5157 no
Finch carotenoid coloration
(Badyaev [15])

68 0.5295 0.1927 NA NA no

Stickleback nest compactness
(Barber [16])

38 0.6085 0.2221 NA NA no

Partridge black ventral area
(Bortolotti [17])

29 0.9032 0.6652 0.8704 0.5812 no

Roe deer antler length (Pelabon
[18])

242 0.0341* 0.0012** 0.0232* 0.0001*** yes

Lion >2.2 yrs mane length (West
[19])

441 0.8687 0.4134 0.9873 0.9521 no

Lion >2.2 yrs mane darkness
(West [19])

442 0.9078 0.6698 0.9602 0.9033 no

Lion >5 yrs mane length (West
[19])

257 0.8085 0.4779 0.8557 0.5356 no

Lion >5 yrs mane darkness (West
[19])

257 0.8285 0.4129 0.8567 0.5173 no

Dung beetle horn length - WA
(Moczek [20])

644 0.0000*** 0.0000*** 0.0000*** 0.0000*** yes

Dung beetle horn length - NC
(Moczek [20])

1016 0.0000*** 0.0000*** 0.0000*** 0.0000*** yes

Earwig forceps length (Tomkins
[21])

134 0.0000*** 0.0000*** 0.0000*** 0.0000*** yes

Great tit stripe length (Norris [22]) 63 0.2034 0.0781 NA NA no
Fiddler crab fight duration (Hyatt
[23])

80 0.7059 0.2601 0.6362 0.3312 no

Fiddler crab fight acts (Hyatt [23]) 80 0.8966 0.5273 0.9006 0.5714 no

TABLE I. Unimodality test results for animal ornamentation data sets. Hartigans’ Dip Test (Dip test) is more conservative
than our bootstrap dip test (LUU test); therefore our LUU test is more likely to reject unimodality. We performed both tests
on log-transformed data because tissue measurements are often log-normally distributed [24]. We note in the rightmost column
if the unimodality tests reject the null hypothesis that the distributions of ornament size are unimodal. Note that we exclude
p-values for log-transformed data (NA) if the original data is not a straight-forward measurement of tissue investment.
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Data set N fractionation
morph
means

morph
variances

fractionation
(log data)

morph
means (log
data)

morph
variances
(log data)

Dung beetle horn length 223 0.2372 0.2631 0.0055 0.0448 -2.8934 0.0005
(Emlen [7]) 0.2677 1.0576 0.0112 0.2103 -1.3094 0.0509

0.2414 0.7280 0.0142 0.3299 -0.3286 0.0553
0.2156 0.1204 0.0018 0.1950 -2.0101 0.0412
0.0380 0.5126 0.0000 0.2200 0.0629 0.0082

Yellow-breasted chat plumage 62 0.7247 40.2987 58.3743 0.2924 3.1794 0.0084
coloration (Mays [8]) 0.2753 23.7743 4.9154 0.7076 3.6963 0.0302
Peacock eye spots (Loyau [9]) 24 1.0000 152.0645 46.7236 1.0000 5.0233 0.0021
Peacock eye spots (Petrie [10]) 24 1.0000 145.9515 95.9004 1.0000 4.981 0.0046
Peacock eye spots (Loyau/Petrie
merged)

48 1.0000 149.0080 80.6543 1.0000 5.0021 0.0038

Arctic charr skin brightness 20 0.4505 2.3538 0.0015 0.4507 0.8559 0.0003
(Skarstein [11]) 0.5495 2.5160 0.0004 0.5493 0.9226 0.0001
Salmon body size (Glover [12]) 72 0.1383 9.3169 0.5107 0.1388 2.2296 0.0056

0.8617 14.6375 1.0055 0.8612 2.6814 0.0046
Widowbird tail length (Anderson
[13])

107 1.0000 221.5356 796.5005 1.0000 5.3920 0.0179

Widowbird red collar patch size
(Anderson [13])

107 1.0000 222.1704 2419.6 1.0000 5.3779 0.0526

Barn owl spottiness (Nieche [14]) 20 1.0000 1.2436 0.4555 1.0000 0.0695 0.3068
Finch carotenoid coloration
(Badyaev [15])

68 1.0000 1.7732 3.1678 NA NA NA

Stickleback nest compactness 38 0.8947 37.7314 99.9319 NA NA NA
(Barber [16]) 0.1053 90.2335 0.0131
Partridge black ventral area
(Bortolotti [17])

29 1.0000 21.1812 56.7020 1.0000 2.9779 0.1728

Roe deer antler length 242 0.0903 12.1801 7.7178 0.1235 2.5521 0.0693
(Pelabon [18]) 0.9097 18.1135 5.1123 0.8765 2.8933 0.0144
Lion > 2.2 yrs mane length 442 0.1936 0.6800 0.0192 0.7171 0.2489 0.0166
(West [19]) 0.8064 1.2663 0.0338 0.2829 -0.2681 0.0827
Lion > 2.2 yrs mane darkness 442 1.0000 1.1008 0.0562 0.6464 0.1695 0.0217
(West [19]) 0.3536 -0.1118 0.0673
Lion> 5 yrs mane length 257 1.0000 1.2977 0.0319 0.0383 -0.1331 0.0814
(West [19]) 0.9617 0.2652 0.0145
Lion > 5 yrs mane darkness 257 1.0000 1.2021 0.0363 0.3205 0.0484 0.0351
(West [19]) 0.6795 0.2283 0.0142
Dung beetle horn length - WA 644 0.3546 0.5105 0.0033 0.4784 -0.6237 0.0224
(Moczek [20]) 0.0837 2.0758 0.4042 0.2111 1.3512 0.0152

0.1616 1.1310 0.0782 0.3105 0.1371 0.2152
0.1910 0.6517 0.0110
0.2091 3.9032 0.2139

Dung beetle horn length - NC 1016 0.2301 2.6811 0.6706 0.2423 0.1279 0.2082
(Moczek [20]) 0.1633 0.9594 0.0686 0.1907 1.1523 0.0295

0.2268 0.5430 0.0097 0.2292 -0.6075 0.0418
0.3799 4.0161 0.1330 0.3378 1.4015 0.0064

Earwig forceps length 134 0.3165 5.9727 0.7099 0.2964 1.8033 0.0144
(Tomkins [21]) 0.2501 7.3120 0.1154 0.2460 1.9901 0.0020

0.4333 3.5705 0.0982 0.4576 1.2796 0.0098
Great tit stripe length 63 0.5789 -14.1532 77.5214 NA NA NA
(Norris [22]) 0.4211 17.1432 60.9468
Fiddler crab fight duration 80 0.0500 482.1489 5555.8303 1.0000 3.8413 1.1077
(Hyatt [23]) 0.4433 19.5720 65.1629

0.1848 51.5698 33.6134
0.3219 125.9917 2189.0050

Fiddler crab fight acts 80 0.1103 53.5474 555.7647 1.0000 2.7213 0.5112
(Hyatt [23]) 0.2370 26.7320 14.2841

0.6526 11.3968 22.7231

TABLE II. We fit Gaussian mixture models with 1–5 components of unequal variance to the animal ornamentation data sets
and find the number of components that yields the best BIC [6]. We performed this fit on log-transformed data because tissue
measurements are often log-normally distributed [24]. Note that we exclude Gaussian mixture models for log-transformed data
(NA) if the original data is not a straight-forward measurement of tissue investment.
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FIG. S5. Additional ornament data sets (birds) A. Blackbird song pulse repetition rate [30] (data extracted from histogram,
so sample size uncertain) B. Great tit stripe size [22] (N=63) C. Partridge black ventral area [17] (N=29) D. Finch carotenoid
coloration [15] (N=68) E. Barn owl spottiness [14] (N=20) F. Widowbird collar patch size [13] (N=107) G. Widowbird tail
length [13] (N=107) H. Peacock eye spots [10] (N=24) I. Peacock eye spots [9] (N=24) J. Yellow-breasted chat plumage color
[8] (N=62)
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FIG. S6. Additional ornament data sets A. Roe deer antler length [18] (N=242) B. Mature (> 2.2 yr) lion mane darkness
[19] (N=442) C. Mature (> 2.2 yr) lion mane length [19] (N=442) D. Older (> 5 yr) lion mane darkness [19] (N=257) E.
Older (> 5 yr) lion mane length [19] (N=257) F. Dung beetle horn length (North Carolina) [20] (N=1016) G. Stickleback
nest compactness [16] (N=38) H. Fiddler crab fight acts [23] I. Fiddler crab fight duration [23] J. Earwig forceps length [21]
(N=134)



14

0 08 17.5

0.4 16

6 18

BA

0

14

6 20

C

FIG. S7. Bimodal body size data sets A. Salmon body size [12] (N=72) B. Trout body size (early season) [26] (data extracted
from histogram, so sample size uncertain) C. Trout body size (late season) [26] (data extracted from histogram, so sample size
uncertain)
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FIG. S8. Bimodal forest data sets A. Diameter at breast height for B. platyphylla trees [28] (N=217) B. Diameter at breast
height for B. ermanii (11-16 yrs old) [29] (data extracted from histogram, so sample size uncertain) C. Height of B. ermanii
(11-16 yrs old) [29] (data extracted from histogram, so sample size uncertain)
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